$$ \lim\limits_{x\to a} \frac{f'(x)}{g'(x)} \qquad \text{bestaat.} $$
Dan
$$\lim\limits_{x\to a} \frac{f(x)}{g(x)}=\lim\limits_{x\to a} \frac{f'(x)}{g'( x)}.$$
In sommige boeken ook geschreven als:If \( h(x)=\frac{f(x)}{g(x)}\), \(\lim\limits_{x\to a} f(x) =\ lim\limits_{x\to a} g(x) =0\), \( g'(x) \ne 0 \), en eenzijdige afgeleiden van een quotiënt \( [h'(x^+), h'(x^-)]\) of \( h'_-(x)=h'_+(x)=L \), dan $$ \lim\limits_{x\to a} \frac{f(x)}{g(x)}=\lim\limits_{x\to a} h(x)=\lim\limits_{x\to a} \frac{f'(x)}{g'(x)}=L.$$
Gezondheid en ziekte © https://www.gezond.win